## ACES (ADMITTED CLASS EVALUATION SERVICE ${ }^{\text {TM }}$ )

# ACES Completion Study for Sample University 

Data in this report are not representative of any institution. All data are hypothetical and were generated for the sole purpose of creating this sampler report.

ENTERING CLASS OF 2017 - 5TH YEAR COMPLETION

DATE: 2020-07-29
SUBMISSION ID: IJKLMNOP12345678

COLLEGEBOARD.ORG/ACES
Table of Contents
ACES Completion Study for Sample University1
Introduction ..... 4
Description of the study design for Sample University ..... 5
Further information ..... 5
Section 1: Background on completion modeling ..... 6
Regression ..... 6
Decision trees ..... 7
Student Completion Decision Tree Example ..... 7
Section 2: Descriptive summary of the study measures ..... 9
Section 3: Evaluating study measures ..... 11
Mean 5th Year Completion Rate by SAT Total Score Quartile ..... 11
Characteristics of Completing and Non-Completing Students ..... 12
Venn Diagram of Completion Descriptors and Predictors for Non-Completing Students ..... 13
Section 4: Modeling completion ..... 14
Assessing models ..... 14
Variable importance ..... 14
Base regression model ..... 15
Full regression model ..... 16
Decision tree model ..... 17
Section 5: Using prediction models to identify students at risk of not completing ..... 19
Regression models ..... 19
Appendix A: Statistical summaries for subgroups ..... 23
SCHOOL: College ..... 23
SCHOOL: Engineering ..... 29
Appendix B: Calculating predicted completion probability ..... 36

## Introduction

This Admitted Class Evaluation Service (ACES) Completion Study is designed to inform your understanding of student completion at Sample University and assist you in predicting student completion outcomes. The student completion outcome you selected to study was 5th Year Completion. Two prediction methods, logistic regression and decision tree modeling, are used to fit predictive models to your student data. This report includes a number of tables and graphs that describe your student data-both the data uploaded by your institution along with College Board data. It presents the predictive model results for all students as well as subgroups, and provides prediction equations that may be applied to future students to understand their likelihood of not completing.

In addition to the Completion studies, ACES makes available Admission Validity studies to examine relationships between College Board exam scores and college performance, and Year-over-Year studies to explore these relationships across entering cohort and year in college. Also available are Placement Validity studies to examine relationships between College Board exam scores and performance in particular courses, and Retention studies to examine relationships between College Board exam scores and student retention outcomes at your institution.

The Completion Study contains several sections:

- Description of the Study Design for Your Institution presents the report options selected and the variables to be included in the analyses.
- Section 1: Background on Completion Modeling discusses the types of prediction models that will be run and the results that will be presented.
- Section 2: Descriptive Summary of the Study Measures presents descriptive statistics (number of valid observations ( N ), mean, minimum, and maximum) for each numeric variable included in the analysis and frequencies for the completion outcome measure in your student data.
- Section 3: Evaluating Study Measures assesses the strength of the relationship between the completion predictors and descriptors included in the study, both individually and in combination, and the student completion outcome measure you selected. These results appear in table and graph form and provide insight into which predictors are likely to be most useful. Information is also shared on the characteristics associated with non-completing students.
- Section 4: Modeling Completion applies several prediction models to your student data and presents useful summaries for evaluating the models.
- Section 5: Using Prediction Models to Identify Students at Risk of Not Completing includes a reference table that presents the estimated probability that students will complete based on logistic regression models presented in Section 4. This section includes plots and tables relating SAT ${ }^{\circledR}$ scores to expected student completion probability.
- Appendix A: Statistical Summaries for Subgroups presents several summaries of student subgroups (if you included subgroups). For each subgroup, descriptive statistics, modeling results, and prediction evaluation information are presented.
- Appendix B: Calculating Predicted Completion Probability illustrates how to calculate predicted completion probability for individual students from completion scores (described in Section 5 ).

A supplementary interactive graph file for this Completion Study can be downloaded from the ACES website. It contains dynamic versions of the tables and graphs in this study that can be viewed, manipulated, and exported using a browser. Instances in which the dynamic version of a table or graph contains more information than the version appearing in this study report are noted in the text.

## Description of the study design for Sample University

Your Completion Study includes 2,808 students who entered Sample University in the fall of 2017. Each student's record included at least a completion indicator and $\mathrm{SAT}^{\circledR}$ scores. If you included $\mathrm{ACT}^{\circledR}$ scores in your submission, they were converted to SAT scores (using the published concordance tables) for those students without SAT scores in the College Board database and used in all completion analyses.

5th Year Completion served as the criterion for student completion in your study.

ACES provided you with opportunities to customize your completion study to be most informative to your institution. You had the option of selecting which SAT scores to include in your study. You chose to use SAT Total score.

You requested that HS GPA, a measure of high school academic achievement, be included as a predictor. HS GPA was taken from the data file you submitted.

You requested that Cumulative GPA (through last term), a measure of college academic achievement, be included as a predictor.

You requested 3 additional predictors: NO_AP, AT_RISK, and RANKING. Of these predictors, there were 2 two-category (dichotomous ( 0,1 )) predictors: NO_AP and AT_RISK. The additional predictors will be referred to as "Add. Predictors" in tables and graphs displaying completion predictors, and any two-category ( 0,1 ) predictors will be included in a table describing characteristics of non-completing students in Section 3.

You requested that the following 2 completion descriptor(s) (CD) be included in summaries describing characteristics of noncompleting students: SAT Total CD with cut-point of 930 and Cum GPA CD with cut-point of 1.75 .

You requested the following subgroup analyses: SCHOOL.

## Further information

- Visit: https://aces.collegeboard.org/
- Call: 800-439-8309
- E-mail: aces-collegeboard@norc.org

The complete statistical output for this report is available upon request by contacting ACES.
The College Board makes every effort to ensure that the information provided in this report and the accompanying data file are accurate. Inaccurate findings may be the result of missing or inaccurate data provided by the institution or discrepancies in matching the institution's data with the College Board database.

## Section 1: Background on completion modeling

In this completion study, two modeling methods will be applied to your data in order to predict student completion.

## Regression

The first modeling method is a form of regression analysis, called logistic regression, which is appropriate when the outcome measure is a dichotomy ( 0,1 ), as is the case when predicting whether a student is a completing student (1) or non-completing student (o). All completion studies present a base regression model that includes SAT scores as predictors and, if you requested it, HS GPA. If any other predictors are included in your study design (for example, college GPA or additional predictors included in your student dataset), then regression results for a model with all predictors will also be presented. These two regression models will be referred to as the base model and the full model.

Results from each regression model include measures of how well the model fits your student data, the relative importance of each predictor, and weights that can be used to calculate the predicted probability of student completion for applicants and students early on in their college career, along with graphs that illustrate the relationship between key predictors and student completion. When reviewing model fit measures, keep in mind that all students with the completion outcome and predictor values are used both to estimate the model and to assess fit and that there may be differences in model performance when applied to new cohorts of students.

## Types of predictor variables

This student completion study supports two types of predictor variables in regression analysis. Predictors can be on a numeric scale, for example, high school GPA or SAT Evidence-Based Reading and Writing (ERW) score. In addition, two-category predictor variables coded as o or 1 are supported. An uploaded predictor variable such as whether a student is in their family's first generation to attend college or not, coded as 1 or 0 , is an example of a two-category predictor. Such predictors can be interpreted in the context of a regression analysis as how having the characteristic relates to the outcome measure.

## Completion cut-off value and predicted completion probability

One consideration in building models to predict relatively rare events, such as students not completing at their institution, is that overall model accuracy can be very high by simply predicting that the more popular outcome will always occur. In other words, predicting that all students will be completing students at an institution with a six-year 93 percent completion rate, will be 93 percent accurate overall. However, such a prediction model would be in error for all non-completing students and having the ability to identify such students is important to institutions.

Regression models developed to predict student completion will produce a predicted probability of completion for each student in the analysis dataset, along with prediction equations that can be applied to students in the future. Depending on model performance, the predicted probability of a student completing can be used to identify students at risk of not completing. The predicted probability of completion has a possible range of o through 1 and students are classified into two groups: predicted completing students and predicted non-completing students. They are classified into these groups using the cut-off probability value associated with the best model fit based on a measure often used to assess model performance in predictive classification tasks.

The model fit measure used is F1, which is a weighted average of the recall and precision of model predictions at a given predicted probability cut-point. Of those students who actually complete (true positive and false negative predictions), recall records the percentage predicted to complete (true positives). Of those students predicted to complete (true positive and false positive predictions), precision records the percentage who actually complete (true positives). The F1 measure thus incorporates both types of prediction errors: failure to correctly predict a completing student and failure to correctly predict a non-completing student. The predicted probability cut-off associated with the highest F1 value is used when predicting students to complete or not complete based on the model.

This valuation, which takes into account the error of incorrectly predicting a non-completing student to complete, is in line with greater institutional concern with students who are at risk of not completing. The predicted probability of completion cutoff applied will vary slightly from institution to institution and for different regression models. Similarly, the predicted probability of completion cut-off value may differ between regression and decision tree models; the latter models are discussed in the next section. The predicted probability cut-off value will appear in the regression results.

This predicted probability of completion cut-off value will be used to classify students as completing students or noncompleting students in summaries that involve predicted completion outcomes, such as the percent correctly classified and the counts and percentages in the regression model success tables.

## Decision trees

Decision tree modeling will also be applied to your data. It is a data mining method that operates by successively splitting the student dataset into smaller groups that tend to concentrate students with the same completion outcome (completing, noncompleting) into the same group. Beginning with all students, the decision tree methodology will examine each predictor as it relates to the completion outcome for all students, then select the strongest predictor and use it to split the student data into two smaller groups, each of which is more uniform on the completion outcome. The process then repeats: for each of the two groups formed, the strongest predictor for that group is used to further split the students into two additional groups. This splitting process continues until a stopping criterion is reached (based on small group size, or no remaining or useful predictors). For a numeric predictor, such as the SAT ERW score, the split is based on an optimal cut-point value, for example, students at or above 600 and students below 600. A two-category predictor would create a split based on its two categories; an example would be students living on campus or off campus. A numeric predictor, like an SAT score or college GPA, can be used at multiple levels within a decision tree: for example, first splitting into groups that separate high from low scores, then later splitting the high group into two additional groups, one with very high scores.

A decision tree provides a visual representation of your student data in terms of predictors that best separate completing from non-completing students. And the groups formed by a decision tree can be easily described since they are based on either cutpoints of numeric predictors (e.g., students with SAT ERW scores at or below 600) or two-category predictor values (e.g., firstgeneration students). Decision trees capture interactive effects since all available predictors are considered when splitting a group. Thus, if student residence on or off campus affects completion for first-generation students but not for others, the decision tree would reflect this.

In decision tree terminology, the primary node splits the data into additional groups. Additional nodes are created until a final split, the terminal node, is created. The terminal nodes are of considerable interest since they define the groups used to produce decision tree predictions. They describe the characteristics of students who are more likely to complete and students who are less likely to complete. When examining decision trees, the size of the nodes should be taken into account since it informs whether a particular pattern applies to a small or large number of your students.

To illustrate, a simple decision tree is presented below.

## Student Completion Decision Tree Example



Each node of the decision tree displays three pieces of information. The topmost item is the predicted outcome for students in that node, which is the most frequent outcome. The second item is the proportion of students with the outcome of interest (here, completing at the institution). And the last item in the node presents the percentage of all students in the analysis who are present in the node.

The root (top) node information indicates that before any splits are performed, the predicted outcome is (unsurprisingly) that students will complete and that 0.79 (or 79 percent) of students in the analysis completed at the institution. Because the root node contains all students in the analysis, the percentage of students in the node is 100 percent.

In this decision tree, students are first split by SAT ERW Section score: those with an SAT ERW Section score below 600 are predicted to be non-completing students, while those who score 600 or higher are predicted to be completing students. Of the students with higher SAT ERW scores, 93 percent are completing students, and this group constitutes 70 percent of all students in the analysis. Thirty percent of students have lower SAT ERW scores, and only 0.47 ( 47 percent) of this group are completing students.

Students with SAT ERW Section scores below 600 are further split into two groups based on whether they are residential or commuting students. There are no further splits in the decision tree in this example, so the decision tree contains two levels based on two splits, and there are three terminal nodes. Students with lower SAT ERW scores and who are commuters are unlikely to complete - only 30 percent ( 0.30 ) of students in this group complete at the institution. In contrast, students with lower SAT ERW scores and who are in residence are likely to complete ( 69 percent).

For decision tree models a predicted probability of completion cut-off is selected based on the best F1 model performance value and is used when predicting students to complete or not complete. As is the case for regression models, this cut-off is used in constructing the decision tree percent correctly classified statistic and when producing the counts and percentages in the model success table. One consideration specific to decision trees, especially small trees with few terminal nodes, is that there may be a range of predicted probability cut-off values that produce the same predicted classification results and the same F1 measure. For example, in the decision tree illustrated above, $69 \%$ of students with an SAT ERW score below 600 and who are in residence complete while $93 \%$ of students with an SAT ERW score at or above 600 complete. Because of this gap between $69 \%$ and $93 \%$, any probability cut-off value between $70 \%$ and $92 \%$ would make the same completion predictions and have the same F1 value. This contrasts with regression model results using SAT scores and GPA predictors, which produce near continuous predicted probability values across students. Because of this aspect of small decision trees, the predicted probability cut-off selected for a decision tree model should not be considered a unique value; generally any cut-off in a range of values is equivalent and this should be recognized. Instead, the decision tree model paths can be helpful in understanding your students and identifying combinations of characteristics that may be associated with students not completing at your institution.

When viewing model results, it should be kept in mind that decision trees and regression are different types of predictive models. Depending on the patterns in your student data, you may prefer one model over the other. Model predictions and predicted cut-off probability may vary across cohorts. A decision tree analysis will be attempted using all completion predictors (full model). Depending on the number of predictors - the strength of your predictors as they relate to student completion, the number of non-completing students (which can be small), and the volume of student data - a decision tree can be simple with just a few nodes or elaborate with many nodes. If the decision tree algorithm finds no worthwhile splits after examining all predictors as they relate to student completion, then a message will appear stating that a decision tree model was not applicable to the data.

## Section 2: Descriptive summary of the study measures

This section presents a descriptive summary of the measures in your study.
For students included in this study-those with SAT scores (and ACT scores concorded to SAT scores) and a completion measure-the first table presents the basic counts and percentages of student completion at your institution.

## Students 5th Year Completion:

| Student Outcome | N (\%) |
| :--- | ---: |
| Non-completing students | $245(9 \%)$ |
| Completing students | $2,563(91 \%)$ |

The table below displays the mean, standard deviation (SD), minimum, and maximum of each individual measure selected for your study, and the number of students ( N ) with information available on each measure. Some measures may be available for all or nearly all of your students. Others may only be available for smaller groups of students. The table presents all measures with information available on 5 or more students.

Statistical summaries of study measures for Students in for all Students:

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | :---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 2,808 | $3.77(0.38)$ | 2.30 | 4.30 |
| SAT Test Score | SAT Total score | 2,808 | $1183(138)$ | 610 | 1600 |
| Add. Predictor | NO_AP | 2,808 | $0.16(0.37)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 2,808 | $0.05(0.22)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 2,808 | $3.00(1.41)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 2,808 | $3.24(0.56)$ | 1.61 | 4.00 |

The next two tables present summaries of the study measures for completing students and for non-completing students.

## Statistical summaries of study measures for Students in for Completing Students:

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | ---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 2,563 | $3.78(0.38)$ | 2.30 | 4.30 |
| SAT Test Score | SAT Total score | 2,563 | $1192(136)$ | 610 | 1600 |
| Add. Predictor | NO_AP | 2,563 | $0.15(0.36)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 2,563 | $0.04(0.20)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 2,563 | $2.98(1.41)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 2,563 | $3.27(0.54)$ | 1.61 | 4.00 |

Statistical summaries of study measures for Students in for Non-Completing Students:

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: |
| High School GPA | High School GPA | 245 | $3.66(0.38)$ | 2.70 | 4.30 |
| SAT Test Score | SAT Total score | 245 | $1081(117)$ | 750 | 1430 |
| Add. Predictor | NO_AP | 245 | $0.23(0.42)$ | 0.00 | 1.00 |


| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Add. Predictor | AT_RISK | 245 | $0.18(0.38)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 245 | $3.22(1.46)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 245 | $2.88(0.62)$ | 1.62 | 4.00 |

## Section 3: Evaluating study measures

This section presents several graphs that examine the relationship between completion predictors in your study and the completion outcome you chose: 5th Year Completion. If two-category ( 0,1 ) predictors or completion descriptors were chosen in your study, then a table will display how often they occur. If there are between two and four descriptors and characteristics, a Venn diagram will present how often they occur in combination for students who did not complete.

The first graph shows the average actual 5th Year Completion Rate of your students for different SAT Total score quartiles, which illustrates the relationship between 5 th Year Completion and the SAT.

Mean 5th Year Completion Rate by SAT Total Score Quartile


## Notes:

- SAT Total score quartiles are calculated from the distribution of your student scores and are based on the sum of the SAT ERW and Math Section scores.
- Quartiles place students into four groups of approximately equal size based on the measure. Depending on the distribution of your students on the measure (e.g., no students with low measure values or a gap in the distribution of measure values), the quartile bands in the graph may not cover the full possible range of the measure; there may be gaps in values between the quartile bands, and there may be fewer than four bands.

Completion descriptors are student characteristics that may provide insight into students who do not complete their degrees at your institution. These descriptors can optionally be defined in the Completion Study Design and identify students who are at
or below a user specified cut-point on such predictor variables as SAT tests, HS GPA, or college GPA. Any completion descriptors you defined in your Study Design will appear in the table below.

The next graph presents a comparison between completing and non-completing students on any completion descriptors and two-category predictors of completion included in this study. For each characteristic, the two bars show the percent of completing students and the percent of non-completing students who exhibit the characteristic. Characteristics on which the student groups differ are of special interest and can help identify particular student characteristics that may be associated with not completing at your institution.

## Characteristics of Completing and Non-Completing Students



Notes:

- Completion descriptors included in the graph are: SAT Total CD with cut-point of 930 on SAT Total score and Cum GPA CD with cut-point of 1.75 on Cumulative GPA.

The table below displays how frequently each completion descriptor or two-category predictor included in your study is present in non-completing students, which may be helpful in characterizing and understanding non-completing students at your institution.

Frequency of Completion Descriptors and Predictors for Non-Completing Students
Percentage (N)

| Completion Descriptor or Predictor | Percentage (N) |
| :--- | ---: |
| Cum GPA CD | $3 \%(8)$ |
| NO_AP | $23 \%(57)$ |
| AT_RISK | $18 \%(44)$ |

## Notes:

- Completion descriptors have "CD" added to their labels.

Below, the Venn diagram of the completion descriptors and two-category predictors shows how often these characteristics overlap or co-occur for non-returning students. Each ellipse represents a different characteristic, and the areas where ellipses overlap identify instances of non-returning students with multiple characteristics.

## Venn Diagram of Completion Descriptors and Predictors for NonCompleting Students



Notes:

Numbers within the regions of ellipse overlap are counts of non-completing students with specific combinations of completion descriptor or two-category predictor characteristics.

- Completion descriptors included in the graph are: SAT Total CD with cut-point of 930 on SAT Total score and Cum GPA CD with cut-point of 1.75 on Cumulative GPA.


## Section 4: Modeling completion

This section will present the results from at least one, and as many as three, completion models applied to your students.

- A base logistic regression model will always be presented. It includes the SAT scores you selected and HS GPA if you selected it as a predictor in your model.
- A full logistic regression model with all predictors selected during the study design process will be presented if you selected more predictors than those appearing in the base model.
- A decision tree model will be run with all predictor variables, but results will only display if the decision tree expands beyond the first (root) node.


## Assessing models

## Percent correctly classified (all models)

A common way to measure the strength of prediction is to estimate the percentage of students correctly classified by the model. A student is considered to be correctly classified by the model if either: 1 ) it was predicted that the student would complete, and they did complete, or 2) it was predicted that the student would not complete, and they did not complete. The analyses reported here predict that a student will complete if the student's estimated probability of completing is greater than or equal to the cut-off value presented in the results. Notice, however, that when nearly all of the students complete, a predictor can have a high success rate even if it correlates very poorly with the criterion. For example, if 97 percent of the students complete and the predictor simply predicts that all students will complete, then the percent correctly classified will be 97.

## Pseudo r-squared (regression models)

In ordinary regression, r-squared is a popular measure of model fit that estimates the proportion of variation in the outcome that can be predicted by the regression model. It has been extended to logistic regression in the form of pseudo r-squared measures which also attempt to estimate the proportion of variation in the outcome that can be predicted from the model. This study presents Nagelkerke's pseudo r-squared, which is scaled to range between 0 and 1 , where 1 indicates the model perfectly predicts the outcome.

## Note on composite predictors (regression models)

Predictor variables do not have to be used individually. Two or more predictors can be used together to form a composite predictor that may be stronger than either of the individual predictor variables alone. If you elected to use more than one predictor variable, the composite predictor is calculated by multiplying each individual predictor by a number that indicates its weight, or strength, in the prediction. The weighted predictors are added to a constant which results in a composite predictor score between approximately -3 to +3 . This composite predictor score can be converted to a predicted probability of completion (see Appendix B).

## Variable importance

Predictor variable importance in regression can be measured in various ways and there is no consensus on a single best measure in the context of logistic regression. In this study, two different measures of predictor importance for regression are presented.

## Absolute Z and P Value

A measure of variable importance, used to order the predictors in a regression model, is the absolute Z statistic, calculated by dividing the coefficient by its standard error and taking its absolute value (so all values are positive). It is used in significance testing and measures how far each coefficient is from zero on a common scale. Predictors with larger absolute Z values are considered more important predictors and the predictors can be ranked on absolute Z . In addition, the statistical significance probability value ( p value) for each predictor, calculated from the Z value, is also reported. While primarily used to assess the statistical significance of a predictor in the model, it can also provide a guide to variable importance: as absolute Z increases, the $p$ value decreases, so predictors with smaller $p$ values are considered more important.

## Adequacy

The adequacy measure of variable importance in regression examines how much each predictor explains relative to the total amount explained by including all predictors, expressed as a percentage. It evaluates how well each predictor performs alone relative to all predictors. Alternatively, adequacy can be thought of as how well each single predictor can replace or act as a substitute for all predictor variables in the model. Predictors with higher adequacy percentages are more important and different predictors can be directly compared on this measure. The sum of the adequacy percentages across all predictors can exceed 100 percent due to overlap (correlations) among the predictors.

Note that in decision tree models, the best available predictor is selected to split a node. As a result, predictor variables selected to create early splits in a decision tree are considered more important predictors and predictors appearing in later splits or not appearing at all are considered less important.

## Base regression model

The next two tables present information about the base regression model applied to your students.

## Base Regression Model Fit Summary

| Statistic | Base Model |
| :--- | ---: |
| N | 2,808 |
| Pseudo R-Square | 0.12 |
| \% Correctly Classified | $85.22 \%$ |

Notes:

- In this model, to calculate the percentage correctly classified, students were predicted to complete if their predicted probability of completion was 0.84 or greater.


## Base Regression Model Summary

| Predictor | Parameter estimate | Absolute Z | P - Value | Adequacy |
| :--- | :---: | :---: | :---: | :---: |
| (Intercept) | -5.23100 |  |  |  |
| SAT Total score | 0.00639 | 10.88 | 0.000 | $99.85 \%$ |
| High School GPA | 0.08668 | 0.48 | 0.629 | $12.16 \%$ |

Notes:

- The absolute Z variable importance measure can be used to rank predictor variables in importance and the adequacy variable importance measure evaluates how much of the amount explained by all predictor variables can be accounted for by each individual predictor.

To calculate a predicted "completion score" for a student, you would multiply the student's value on each predictor variable by its prediction weight and then add the constant. Directions for using predicted completion scores will be found in Section 5 . For example, the calculation of a predicted completion score for a student with an SAT Total score of 1180 and High School GPA of 3.8 would be $-5.231+0.00639$ * SAT Total score +0.08668 * High School GPA or 2.54 .

The table below examines the agreement between completion predicted by the model (classifying students with a predicted probability of completing of 0.84 or greater as predicted to complete) and actual completion. Values in this table form the basis of the percent correctly classified reported earlier.

## Base Model Success - Predicted Completion and Actual Completion

## Full regression model

The next two tables present information about the full regression model applied to your students.
Full Regression Model Fit Summary

| Statistic | Full Model |
| :--- | ---: |
| N | 2,808 |
| Pseudo R-Square | 0.16 |
| \% Correctly Classified | $86.57 \%$ |

Notes:

- In this model, to calculate the percentage correctly classified, students were predicted to complete if their predicted probability of completion was 0.83 or greater.
Full Regression Model Summary

| Predictor | Parameter estimate | Absolute Z | P - Value | Adequacy |
| :--- | :---: | :---: | :---: | :---: |
| (Intercept) | -4.92813 |  |  |  |
| SAT Total score | 0.00585 | 9.11 | 0.000 | $73.59 \%$ |
| High School GPA | -0.19167 | 0.58254 | 1.00 | 0.316 |
| Cumulative GPA | 0.20882 | 3.36 | 0.001 | $8.96 \%$ |
| NO_AP | -0.69041 | 1.15 | 0.250 | $50.48 \%$ |
| AT_RISK | -0.13596 | 2.48 | 0.013 | $4.36 \%$ |
| RANKING | 2.72 | 0.007 | $27.65 \%$ |  |

Notes:

- The absolute $Z$ variable importance measure can be used to rank predictor variables in importance and the adequacy variable importance measure evaluates how much of the amount explained by all predictor variables can be accounted for by each individual predictor.

To calculate a predicted "completion score" for a student, you would multiply the student's value on each predictor variable by its prediction weight and then add the constant. Directions for using predicted completion scores will be found in Section 5 . For example, the calculation of a predicted completion score for a student with an SAT Total score of 1180, High School GPA of 3.8, Cumulative GPA of 3.2, NO_AP of 1, AT_RISK of 1 , and RANKING of 3 would be $-4.92813+0.00585$ * SAT Total score + $0.19167^{*}$ High School GPA + 0.58254 * Cumulative GPA + 0.20882 * NO_AP + -0.69041 * AT_RISK + -0.13596 * RANKING or 2.47.

The table below examines the agreement between completion predicted by the model (classifying students with a predicted probability of completing of 0.83 or greater as predicted to complete) and actual completion. Values in this table form the basis of the percent correctly classified reported earlier.

| Non-completing students | $99(30 \%)$ | $231(70 \%)$ |
| :--- | :--- | ---: |
| Completing students | $146(6 \%)$ | $2,332(94 \%)$ |

## Decision tree model

As noted in Section 1, a decision tree builds a predictive model by successively splitting the data into subgroups that are homogeneous on the outcome measure, which in this case is completion. Since decision tree splits are built using student information as it relates to student completion, student characteristics that identify subgroups with relatively low completion rates are of interest and can be useful in thinking about students who may benefit from closer advisement to ensure they complete at the institution.

All predictor variables are eligible for inclusion in the decision tree, and those appearing higher in the tree tend to be more important in dividing the students into those with higher completion rates and those with lower completion.

Completion predictors included in the decision tree model are: SAT Total score, High School GPA, Cumulative GPA, NO_AP, AT_RISK, and RANKING.

## Decision Tree Model



- The uppermost node (root node) includes all students. To build the decision tree, students are further divided into groups based on predictors (cut-points for numeric predictors, category groupings for categorical predictors).
- The label information in each node includes three items: the decision tree completion prediction for students in that node (Completing, Non-Completing), the proportion of students within the node who were predicted to complete, and the size of the node expressed as a percentage of students in the analysis.
- Below each node that splits is a label identifying the predictor and split criterion used to split the student data in that node into two groups that differ on completion.
- The two lines extending from each node lead to the child nodes resulting from the split.
- When a node is split, those students for whom the split condition is true (yes) follow the left branch below the node, and students for whom the split condition is false (no) follow the right branch.
- The terminal nodes at the bottom of the tree are the end points of the decision tree model and represent final student groupings based on the predictors. These terminal nodes can be useful to better understand characteristics of non-completing students and in predicting completion for future students based on the decision tree model.

The table below examines the agreement between completion predicted by the decision tree model (classifying students with a predicted probability of completing of 0.76 or greater as predicted to complete) and actual completion. Values in this table form the basis of the percent correctly classified. Using the decision tree model, the percent correctly classified is $88 \%$.

## Decision Tree Success-Predicted Completion and Actual Completion

| Prediction | Actual Non-Completing Student | Actual Completing Student |
| :--- | ---: | ---: |
| Non-completing students | $62(29 \%)$ | $151(71 \%)$ |
| Completing students | $183(7 \%)$ | $2,412(93 \%)$ |

It is important to keep in mind that the model success table aggregates over all terminal nodes in the decision tree. The decision tree itself should be examined to see which terminal nodes have higher proportions of non-completing students, since the characteristics of these groups can be useful in identifying and better understanding non-completing students.

## Section 5: Using prediction models to identify students at risk of not completing

This section describes how to convert the predicted completion scores from the logistic regression model(s) in Section 4 to predicted completion probabilities. Also, several graphs and tables displaying predicted completion probability as a function of selected predictors will be presented.

## Regression models

In Section 4, regression model weights were presented in a table with instructions on calculating the predicted completion score for a student. This predicted completion score is on a scale of approximately -3 to +3 and can be converted to a more easily interpretable completion probability to identify students at risk of not completing at the institution. The table below presents a list of completion score cutoff values, along with the predicted probability of completion. It can be used with the regression model(s) in Section 4.

## Calculating Predicted Completion Probability from Completion Scores



Notes:

- To obtain a predicted completion probability from a completion score based on a logistic regression model, take the predicted score, calculated using both the regression weights and constant from Section 4 and the student's values on the predictors, and then locate that predicted completion score in the table to find the associated predicted completion probability.
- If your calculated completion score value doesn't match a value in the table, then round the calculated predicted completion value to two decimals, which should be near a table value. In this case the predicted probability of
completion will be accurate within 2.5 percent since the table is calibrated to 0.05 increments of predicted probability.
- Predicted completion probabilities can be calculated for all predicted completion scores (without requiring rounding and loss of accuracy) using a formula that can be implemented with a calculator or spreadsheet. Instructions for this appear in Appendix B.

For example, if the predicted completion score for a student calculated using the student's values and the regression weights from Section 4 is -1.39 , the predicted probability of completion for the student is 0.20 , and this student would have a relatively low predicted probability of completion.

## Predicted completion probability related to select predictors

Some plots and tables are presented that relate predictor variables (from the predictors you requested) to predicted probability of completion.

The next graph illustrates the relationship between SAT Total score and the predicted probability of completion based on your student data.

Predicted 5th Year Completion Probability Based on SAT Total score


Notes:

- The predicted completion probability in this plot is based only on SAT Total score (i.e., if you selected other predictor variables, they are not reflected in this plot).
- The plot illustrates the relationship between SAT Total score and predicted completion probability. You can use this plot to better understand how particular SAT Total score values relate to particular probabilities of completing at your institution.

The next graph illustrates the relationship between SAT Total score and the predicted probability of completion for the $50^{\text {th }}$ and $75^{\text {th }}$ percentile HS GPA values based on your student data. This plot helps you to understand differences in predicted probabilities by different HS GPA values for students with similar SAT scores and vice versa.

## Predicted 5th Year Completion Probability Based on SAT Total score and HS GPA



Notes:

- The predicted completion probability in this plot is based only on the predictor variables listed in the plot (i.e., if you selected other predictor variables, they are not reflected in this plot).
- If only a single line appears in the plot then the $50^{\text {th }}$ and $75^{\text {th }}$ percentile values of HS GPA are the same for students in the analysis.
- This plot illustrates the relationship between SAT Total score and predicted completion probability for the $50^{\text {th }}$ and $75^{\text {th }}$ percentile values of HS GPA. This plot helps you to understand differences in predicted probabilities by different HS GPA values for students with similar SAT scores and vice versa.

The table below presents predicted completion probabilities for your students by averaging the predicted completion probabilities over SAT Total score quartiles and HS GPA categories formed by rounding or grouping HS GPA values.

Estimated Predicted 5th Year Completion Probabilities by SAT Total score and HS GPA

| SAT Total score | HS GPA A <br> Mean (N) | HS GPA B <br> Mean (N) | HS GPA C or below <br> Mean (N) |
| :--- | :---: | :---: | ---: |
| $610-1090$ | $0.84(553)$ | $0.79(203)$ | $0.66(8)$ |
| $1100-1180$ | $0.92(551)$ | $0.91(129)$ |  |
| $1190-1270$ | $0.95(599)$ | $0.95(100)$ | $0.95(3)$ |
| $1280-1600$ | $0.98(599)$ | $0.97(63)$ |  |

## Appendix A: Statistical summaries for subgroups

This appendix contains descriptive statistics for each student subgroup. In addition, modeling results will be presented for each of the subgroups. Subgroup specific models may be useful if the prediction model for all students does not fit a specific subgroup well.

To better understand how subgroups might differ from the full student sample with regard to completion, the tables right below present the percent correctly classified and predictive strength measure(s) from Section 3, calculated separately for each subgroup. In other words, the common logistic regression model (fit to all students in the study) is applied to each subgroup and evaluated.

## Subgroup Results Predicting Completion - Base Regression Model

| Subgroup | Number of Students Modeled | N (\%) Correctly Classified |
| :--- | ---: | ---: |
| SCHOOL: College | 2,287 | $1,958(86 \%)$ |
| SCHOOL: Engineering | 521 | $435(83 \%)$ |

## Subgroup Results Predicting Completion - Full Regression Model

| Subgroup | Number of Students Modeled | N (\%) Correctly Classified |
| :--- | ---: | ---: |
| SCHOOL: College | 2,287 | $1,988(87 \%)$ |
| SCHOOL: Engineering | 521 | $443(85 \%)$ |

## SCHOOL: College

This section presents a descriptive summary of the study measures students in SCHOOL: College.

## Students 5th Year Completion for SCHOOL: College

| Student Outcome | $\mathrm{N}(\%)$ |
| :--- | ---: |
| Non-completing students | $182(8 \%)$ |
| Completing students | $2,105(92 \%)$ |

The table below displays the mean, standard deviation (SD), minimum, and maximum of each individual measure selected for your study, and the number of students ( N ) with information available on each measure. Some measures may be available for all or nearly all of your students. Others may only be available for smaller groups of students. The table presents all measures with information available on 5 or more students.

Statistical summaries of study measures for all Students in SCHOOL: College

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | ---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 2,287 | $3.76(0.39)$ | 2.30 | 4.30 |
| SAT Test Score | SAT Total score | 2,287 | $1185(137)$ | 610 | 1600 |
| Add. Predictor | NO_AP | 2,287 | $0.17(0.38)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 2,287 | $0.05(0.22)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 2,287 | $3.00(1.41)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 2,287 | $3.24(0.55)$ | 1.61 | 4.00 |

The next two tables present summaries of the study measures for completing students and for non-completing students.

Statistical summaries of study measures for Completing Students in SCHOOL: College

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | ---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 2,105 | $3.77(0.39)$ | 2.30 | 4.30 |
| SAT Test Score | SAT Total score | 2,105 | $1193(135)$ | 610 | 1600 |
| Add. Predictor | NO_AP | 2,105 | $0.17(0.37)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 2,105 | $0.04(0.20)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 2,105 | $2.97(1.41)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 2,105 | $3.27(0.54)$ | 1.61 | 4.00 |

Statistical summaries of study measures for Non-Completing Students in SCHOOL: College

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | :---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 182 | $3.67(0.37)$ | 2.70 | 4.30 |
| SAT Test Score | SAT Total score | 182 | $1088(114)$ | 750 | 1410 |
| Add. Predictor | NO_AP | 182 | $0.22(0.42)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 182 | $0.17(0.38)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 182 | $3.29(1.47)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 182 | $2.91(0.63)$ | 1.62 | 4.00 |

The graph below presents, for completing and non-completing students in SCHOOL: College the percentage with characteristic measured by each completion descriptor or two-category predictor of completion.

## Characteristics of Completing and Non-Completing Students for SCHOOL: College



Notes:

- Completion descriptors included in the graph are: SAT Total CD with cut-point of 930 on SAT Total score and Cum GPA CD with cut-point of 1.75 on Cumulative GPA.

The table below displays how frequently each completion descriptor or two-category predictor included in your study is present in non-completing students, which may be helpful in characterizing and understanding non-completing students at your institution.

Frequency of Completion Descriptors and Predictors for Non-Completing Students in SCHOOL: College

| Completion Descriptor or Predictor | Percentage (N) |
| :--- | ---: |
| SAT Total CD | $9 \%(16)$ |
| Cum GPA CD | $2 \%(4)$ |
| NO_AP | $22 \%(40)$ |
| AT_RISK | $17 \%(31)$ |

Notes:

- Completion descriptors have "CD" added to their labels.

Below, the Venn diagram of the completion descriptors and two-category predictors shows how often these characteristics overlap or co-occur for non-completing students. Each ellipse represents a different characteristic, and the areas where ellipses overlap identify instances of non-completing students with multiple characteristics.

## Venn Diagram of Completion Descriptors and Predictors for Non-Completing Students in SCHOOL: College



Notes:

- Completion descriptors included in the graph are: SAT Total CD with cut-point of 930 on SAT Total score and Cum GPA CD with cut-point of 1.75 on Cumulative GPA.

The two tables below present information about the base regression model for students in subgroup SCHOOL: College.

## Base Regression Model Fit Summary for SCHOOL: College

| Statistic | Base Model |
| :--- | ---: |
| N | 2,287 |
| Pseudo R-Square | 0.10 |
| \% Correctly Classified | $85.83 \%$ |

## Notes:

- In this model, to calculate the percentage correctly classified, students were predicted to complete if their predicted probability of completion was 0.85 or greater.


## Base Regression Model Summary for SCHOOL: College

| Predictor | Parameter estimate | Absolute Z | P - Value | Adequacy |
| :--- | ---: | :---: | :---: | :---: |
| (Intercept) | -4.53049 |  |  |  |
| SAT Total score | 0.00608 | 9.08 | 0.000 | $100.00 \%$ |
| High School GPA | 0.01326 | 0.06 | 0.949 | $9.93 \%$ |

## Base Model Success - Predicted Completion and Actual Completion for SCHOOL: College

| Prediction | Actual Non-Completing Student | Actual Completing Student |
| :--- | ---: | ---: |
| Non-completing students | $52(21 \%)$ | $194(79 \%)$ |
| Completing students | $130(6 \%)$ | $1.911(94 \%)$ |

The two tables below present information about the full regression model for students in subgroup SCHOOL: College.
Full Regression Model Fit Summary for SCHOOL: College

| Statistic | Full Model |
| :--- | ---: |
| N | 2,287 |
| Pseudo R-Square | 0.15 |
| \% Correctly Classified | $88.02 \%$ |

Notes:

- In this model, to calculate the percentage correctly classified, students were predicted to complete if their predicted probability of completion was 0.83 or greater.
Full Regression Model Summary for SCHOOL: College

| Predictor | Parameter estimate | Absolute Z | P - Value | Adequacy |
| :--- | :---: | :---: | :---: | :---: |
| (Intercept) | -4.34072 |  |  |  |
| SAT Total score | 0.00592 | 7.95 | 0.000 | $70.57 \%$ |
| High School GPA | -0.23188 | 1.06 | 0.289 | $7.01 \%$ |
| Cumulative GPA | 0.46856 | 2.36 | 0.018 | $44.44 \%$ |
| NO_AP | 0.39105 | 1.83 | 0.067 | $2.18 \%$ |
| AT_RISK | -0.79473 | 2.45 | 0.014 | $26.69 \%$ |
| RANKING | -0.17303 | 3.01 | 0.003 | $5.82 \%$ |

Full Model Success - Predicted Completion and Actual Completion for SCHOOL: College
Actual Non-Completing Student
Actual Completing Student

| Non-completing students | $62(29 \%)$ | $154(71 \%)$ |
| :--- | :---: | :---: |
| Completing students | $120(6 \%)$ | $1,951(94 \%)$ |

## Decision tree model for SCHOOL: College

As noted in Section 1, a decision tree builds a predictive model by successively splitting the data into subgroups that are homogeneous on the outcome measure, which in this case is completion. Since decision tree splits are built using student information as it relates to student completion, student characteristics that identify subgroups with relatively low completion rates are of interest and can be useful in thinking about students who may benefit from closer advisement to ensure they complete at the institution.

All predictor variables are eligible for inclusion in the decision tree, and those appearing higher in the tree tend to be more important in dividing the students into those with higher completion rates and those with lower completion.

Completion predictors included in the decision tree model are: SAT Total score, High School GPA, Cumulative GPA, NO_AP, AT_RISK, and RANKING.


Notes:

- The uppermost node (root node) includes all students. To build the decision tree, students are further divided into groups based on predictors (cut-points for numeric predictors, category groupings for categorical predictors).
- The label information in each node includes three items: the decision tree completion prediction for students in that node (Completing, Non-Completing), the proportion of students within the node who actually completed, and the size of the node expressed as a percentage of students in the analysis.
- Below each node that splits is a label identifying the predictor and split criterion used to split the student data in that node into two groups more homogeneous on completion.
- The two lines extending from each node lead to the child nodes resulting from the split.
- When a node is split, those students for whom the split condition is true (yes) follow the left branch below the node, and students for whom the split condition is false (no) follow the right branch.
- The terminal nodes at the bottom of the tree are the end points of the decision tree model and represent final student groupings based on the predictors. These terminal nodes can be useful to better understand characteristics of non-completing students and in predicting completion for future students based on the decision tree model.

The table below examines the agreement between completion predicted by the decision tree model (classifying students with a predicted probability of completing of 0.80 or greater as predicted to complete) and actual completion. Values in this table form the basis of the percent correctly classified. Using the decision tree model, the percent correctly classified is $88 \%$.

## Decision Tree Success-Predicted Completion and Actual Completion for SCHOOL: College

| Prediction | Actual Non-Completing Student | Actual Completing Student |
| :--- | ---: | ---: |
| Non-completing students | $74(31 \%)$ | $161(69 \%)$ |
| Completing students | $108(5 \%)$ | $1,944(95 \%)$ |

It is important to keep in mind that the model success table aggregates over all terminal nodes in the decision tree. The decision tree itself should be examined to see which terminal nodes have higher proportions of non-completing students, since the characteristics of these groups can be useful in identifying and better understanding non-completing students.

## SCHOOL: Engineering

This section presents a descriptive summary of the study measures students in SCHOOL: Engineering.

## Students 5th Year Completion for SCHOOL: Engineering

| Student Outcome | N (\%) |
| :--- | ---: |
| Non-completing students | $63(12 \%)$ |
| Completing students | $458(88 \%)$ |

The table below displays the mean, standard deviation (SD), minimum, and maximum of each individual measure selected for your study, and the number of students ( N ) with information available on each measure. Some measures may be available for all or nearly all of your students. Others may only be available for smaller groups of students. The table presents all measures with information available on 5 or more students.

## Statistical summaries of study measures for all Students in SCHOOL: Engineering

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | :---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 521 | $3.79(0.37)$ | 2.70 | 4.30 |
| SAT Test Score | SAT Total score | 521 | $1172(142)$ | 740 | 1600 |
| Add. Predictor | NO_AP | 521 | $0.12(0.33)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 521 | $0.06(0.24)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 521 | $3.00(1.41)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 521 | $3.21(0.57)$ | 1.62 | 4.00 |

The next two tables present summaries of the study measures for completing students and for non-completing students.

Statistical summaries of study measures for Completing Students in SCHOOL: Engineering

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | :---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 458 | $3.82(0.35)$ | 2.70 | 4.30 |
| SAT Test Score | SAT Total score | 458 | $1188(138)$ | 740 | 1600 |
| Add. Predictor | NO_AP | 458 | $0.10(0.30)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 458 | $0.04(0.20)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 458 | $3.00(1.41)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 458 | $3.28(0.54)$ | 1.67 | 4.00 |

Statistical summaries of study measures for Non-Completing Students in SCHOOL: Engineering

| Type | Measure Name | N | Mean (SD) | Minimum | Maximum |
| :--- | :--- | :---: | :---: | :---: | :---: |
| High School GPA | High School GPA | 63 | $3.64(0.42)$ | 2.70 | 4.30 |
| SAT Test Score | SAT Total score | 63 | $1060(122)$ | 770 | 1430 |
| Add. Predictor | NO_AP | 63 | $0.27(0.45)$ | 0.00 | 1.00 |
| Add. Predictor | AT_RISK | 63 | $0.21(0.41)$ | 0.00 | 1.00 |
| Add. Predictor | RANKING | 63 | $3.03(1.44)$ | 1.00 | 5.00 |
| College GPA | Cumulative GPA | 63 | $2.77(0.59)$ | 1.62 | 3.92 |

The graph below presents, for completing and non-completing students in SCHOOL: Engineering the percentage with characteristic measured by each completion descriptor or two-category predictor of completion.

## Characteristics of Completing and Non-Completing Students for SCHOOL: Engineering



Notes:

- Completion descriptors included in the graph are: SAT Total CD with cut-point of 930 on SAT Total score and Cum GPA CD with cut-point of 1.75 on Cumulative GPA.

The table below displays how frequently each completion descriptor or two-category predictor included in your study is present in non-completing students, which may be helpful in characterizing and understanding non-completing students at your institution.

Frequency of Completion Descriptors and Predictors for Non-Completing Students in SCHOOL: Engineering

Completion Descriptor or Predictor
Percentage (N)

| SAT Total CD | $17 \%(11)$ |
| :--- | ---: |
| Cum GPA CD | $6 \%(4)$ |
| NO_AP | $27 \%(17)$ |
| AT_RISK | $21 \%(13)$ |

Notes:

- Completion descriptors have "CD" added to their labels.

Below, the Venn diagram of the completion descriptors and two-category predictors shows how often these characteristics overlap or co-occur for non-completing students. Each ellipse represents a different characteristic, and the areas where ellipses overlap identify instances of non-completing students with multiple characteristics.

## Venn Diagram of Completion Descriptors and Predictors for Non-Completing Students in SCHOOL: Engineering



Notes:

- Completion descriptors included in the graph are: SAT Total CD with cut-point of 930 on SAT Total score and Cum GPA CD with cut-point of 1.75 on Cumulative GPA.

The two tables below present information about the base regression model for students in subgroup SCHOOL: Engineering.

## Base Regression Model Fit Summary for SCHOOL: Engineering

| Statistic | Base Model |
| :--- | ---: |
| N | 521 |
| Pseudo R-Square | 0.18 |
| \% Correctly Classified | $82.15 \%$ |

## Notes:

- In this model, to calculate the percentage correctly classified, students were predicted to complete if their predicted probability of completion was 0.79 or greater.


## Base Regression Model Summary for SCHOOL: Engineering

| Predictor | Parameter estimate | Absolute Z | P - Value | Adequacy |
| :--- | :---: | :---: | :---: | :---: |
| (Intercept) | -7.66405 |  |  |  |
| SAT Total score | 0.00715 | 5.74 | 0.000 | $97.36 \%$ |
| High School GPA | 0.43554 | 1.17 | 0.243 | $22.64 \%$ |

## Base Model Success - Predicted Completion and Actual Completion for SCHOOL: Engineering

| Prediction | Actual Non-Completing Student | Actual Completing Student |
| :--- | ---: | ---: |
| Non-completing students | $25(31 \%)$ | $55(69 \%)$ |
| Completing students | $38(9 \%)$ | $403(91 \%)$ |

The two tables below present information about the full regression model for students in subgroup SCHOOL: Engineering.
Full Regression Model Fit Summary for SCHOOL: Engineering

| Statistic | Full Model |
| :--- | ---: |
| N | 521 |
| Pseudo R-Square | 0.24 |
| \% Correctly Classified | $85.41 \%$ |

Notes:

- In this model, to calculate the percentage correctly classified, students were predicted to complete if their predicted probability of completion was 0.77 or greater.
Full Regression Model Summary for SCHOOL: Engineering

| Predictor | Parameter estimate | Absolute Z | P Value | Adequacy |
| :--- | :---: | :---: | :---: | :---: |
| (Intercept) | -6.86352 |  |  |  |
| SAT Total score | 0.00565 | -0.01010 | 0.25 | 0.000 |
| High School GPA | 0.91479 | 0.03 | 0.980 | $71.98 \%$ |
| Cumulative GPA | -0.51733 | -0.50 | 0.012 | $16.74 \%$ |
| NO_AP | -0.34953 | 1.42 | 0.156 | $61.18 \%$ |
| AT_RISK | -0.03034 | 0.61 | 0.539 | $17.13 \%$ |
| RANKING | 0.29 | 0.774 | $26.74 \%$ |  |

Full Model Success - Predicted Completion and Actual Completion for SCHOOL: Engineering

| Prediction | Actual Non-Completing Student | Actual Completing Student |
| :--- | ---: | ---: |
| Non-completing students | $32(42 \%)$ | $45(58 \%)$ |
| Completing students | $31(7 \%)$ | $413(93 \%)$ |

## Decision tree model for SCHOOL: Engineering

As noted in Section 1, a decision tree builds a predictive model by successively splitting the data into subgroups that are homogeneous on the outcome measure, which in this case is completion. Since decision tree splits are built using student information as it relates to student completion, student characteristics that identify subgroups with relatively low completion rates are of interest and can be useful in thinking about students who may benefit from closer advisement to ensure they complete at the institution.

All predictor variables are eligible for inclusion in the decision tree, and those appearing higher in the tree tend to be more important in dividing the students into those with higher completion rates and those with lower completion.

Completion predictors included in the decision tree model are: SAT Total score, High School GPA, Cumulative GPA, NO_AP, AT_RISK, and RANKING.



SATTotal < 955-


Notes:

- The uppermost node (root node) includes all students. To build the decision tree, students are further divided into groups based on predictors (cut-points for numeric predictors, category groupings for categorical predictors).
- The label information in each node includes three items: the decision tree completion prediction for students in that node (Completing, Non-Completing), the proportion of students within the node who actually completed, and the size of the node expressed as a percentage of students in the analysis.
- Below each node that splits is a label identifying the predictor and split criterion used to split the student data in that node into two groups more homogeneous on completion.
- The two lines extending from each node lead to the child nodes resulting from the split.
- When a node is split, those students for whom the split condition is true (yes) follow the left branch below the node, and students for whom the split condition is false (no) follow the right branch.
- The terminal nodes at the bottom of the tree are the end points of the decision tree model and represent final student groupings based on the predictors. These terminal nodes can be useful to better understand characteristics of non-completing students and in predicting completion for future students based on the decision tree model.

The table below examines the agreement between completion predicted by the decision tree model (classifying students with a predicted probability of completing of 0.78 or greater as predicted to complete) and actual completion. Values in this table form the basis of the percent correctly classified. Using the decision tree model, the percent correctly classified is $79 \%$.

Decision Tree Success-Predicted Completion and Actual Completion for SCHOOL: Engineering

| Prediction | Actual Non-Completing Student | Actual Completing Student |
| :--- | ---: | ---: |
| Non-completing students | $35(31 \%)$ | $79(69 \%)$ |
| Completing students | $28(7 \%)$ | $379(93 \%)$ |

It is important to keep in mind that the model success table aggregates over all terminal nodes in the decision tree. The decision tree itself should be examined to see which terminal nodes have higher proportions of non-completing students, since the characteristics of these groups can be useful in identifying and better understanding non-completing students.

## Appendix B: Calculating predicted completion probability

Section 4 presented logistic regression weights (coefficients) that can be used to calculate predicted completion scores, and Section 5 included a table mapping predicted completion scores to predicted completion probabilities. However, this table displayed predicted completion probabilities in increments of o.05, which places limits on its accuracy and usefulness.

As an alternative, predicted completion probabilities can be calculated from predicted completion scores through functions available on calculators or via spreadsheet formulas.

The relation between predicted completion probability (prob) and the predicted completion score (score) is:
prob $=\exp ($ score $) /(1+\exp ($ score $))$
Where exp is the exponential function, which is available on calculators, statistical programs, and spreadsheets.
To illustrate using the base logistic model results from Section 4, the calculation of a predicted completion score for a student with SAT Total score of 1180 and High School GPA of 3.8 would be $-5.231+0.00639$ * SAT Total score +0.08668 * High School GPA or 2.54. And the predicted completion probability would be $\exp (2.54) /(1+\exp (2.54))$ or 0.93 . So the predicted completion probability for this student would be $93 \%$.

In Excel, if the predicted completion score were the first entry in column A, the formula below could be used to calculate the predicted probability of completion:
$=\operatorname{EXP}(A 1) /(1+\operatorname{EXP}(A 1))$
In this way, predicted completion probabilities can be calculated for new students using the regression weights in Section 4. Also, these more precise predicted completion probabilities are included in the student matched file available for download with this study.

Please feel free to contact the ACES team at aces-collegeboard@norc.org or 800-439-8309 for assistance in interpreting this report and making use of the information included.

